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ABSTRACT

In this paper, we present the method for our submission to
the Emotion Recognition in the Wild Challenge (EmotiW
2014). The challenge is to automatically classify the emo-
tions acted by human subjects in video clips under real-
world environment. In our method, each video clip can be
represented by three types of image set models (i.e. linear
subspace, covariance matrix, and Gaussian distribution) re-
spectively, which can all be viewed as points residing on some
Riemannian manifolds. Then different Riemannian kernels
are employed on these set models correspondingly for simi-
larity/distance measurement. For classification, three types
of classifiers, i.e. kernel SVM, logistic regression, and par-
tial least squares, are investigated for comparisons. Finally,
an optimal fusion of classifiers learned from different kernels
and different modalities (video and audio) is conducted at
the decision level for further boosting the performance. We
perform an extensive evaluation on the challenge data (in-
cluding validation set and blind test set), and evaluate the
effects of different strategies in our pipeline. The final recog-
nition accuracy achieved 50.4% on test set, with a significant
gain of 16.7% above the challenge baseline 33.7%.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications—computer vi-
sion, signal processing ; I.4.m [Image Processing and Com-
puter Vision]: Miscellaneous

Keywords
Emotion Recognition; Riemannian Manifold; Multiple Ker-
nels; EmotiW 2014 Challenge

1. INTRODUCTION
Automatic emotion recognition is a popular and challeng-

ing problem in the research fields of cognitive psychology,
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human-computer interaction, pattern recognition, and so on.
Early stage research mostly focuses on the emotion databas-
es collected in “lab-controlled” environment where human
subjects posed particular emotions (e.g. angry, happy, and
surprise). With recent advances in emotion recognition com-
munity, various spontanous or wild databases have been in-
troduced for emotion recognition challenges, such as the Fa-
cial Expression Recognition & Analysis (FERA 2011) [33],
Audio Video Emotion Challenges (AVEC 2011/2012/2013)
[32], and Emotion Recognition in the Wild (EmotiW 2013)
[8]. These challenges have provided common benchmarks
for emotion recognition researchers.

Previous works on emotion recognition can be broadly cat-
egorized into two groups [39]: static image based methods
[29, 42, 21] and video based methods [41, 38, 22]. The video
based methods tend to utilize dynamic information extract-
ed from image sequences for improving the performance. For
instance, Zhao et al. [41] encoded spatial-temporal pattern-
s in facial image sequences using LBP-TOP features. Li-
u et al. [22] modeled each emotion clip as a manifold of
mid-level features for representing the local spatial-temporal
variations on faces. As demonstrated in their experiments,
various types of dynamic features are crucial for modeling
emotion variations in the recognition task.

Generally, extracting dynamics from successive frames re-
quires accurate image alignment to eliminate the rigid mo-
tion effect brought by camera or head pose. However, it is
quite difficult especially when dealing with “wild data” due
to the large variations caused by uncontrolled real-world en-
vironment. As a video clip can be simply regarded as an
image set, it is natural to introduce the image-set-based clas-
sification methods [13, 35, 34, 20], which have been proved
to be more robust to image misalignment. So in this pa-
per, we propose to represent the emotion video clip using
three kinds of image set models (i.e. linear subspace, covari-
ance matrix, and Gaussian distribution) respectively, which
can all be viewed as points residing on some Riemannian
manifolds. Then different Riemanian kernels are employed
on these set models correspondingly for similarity/distance
measurement. For classification, three types of classifiers,
kernel SVM, logistic regression, partial least squares, are in-
vestigated for comparisons. Finally, a score-level fusion of
classifiers learned based on different kernel methods and d-
ifferent modalities (i.e. video and audio) is conducted to
further improve the performance. An overview of the pro-
posed method is illustrated in Figure 1. We will detail the
whole procedure in the next section.
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Figure 1: An overview of the proposed method. The whole procedure includes two stages: emotion video
representation and recognition. In representation stage, different image features are first extracted from
the coarsely aligned faces, then different image set models are employed on frame features respectively for
representing each video clip. In recognition stage, classification on Riemannian manifold sapnned by the
points (i.e. image sets) is performed using different types of classifiers by exploiting a group of Riemannian
kernels. Finally a score-level fusion is conducted to combine the prediction results from different kernels.

2. THE PROPOSED METHOD

2.1 Image Feature

2.1.1 HOG
The Histogram of Oriented Gradients (HOG) [4] feature

describes the local shape and appearance of objects by cap-
turing the distribution information of intensity gradients or
edge directions. The descriptor decomposes a local region
into small squared cells, computes the histogram of different
bins of oriented gradients in each cell, and normalizes the
results using block-wise pattern (each block contains several
cells). HOG is commonly used in computer vision problems,
such as object detection and recognition. It has also been
successfully used for facial expression analysis in [6, 30].

2.1.2 Dense SIFT

The Scale-Invariant Feature Transform (SIFT) [25] com-
bines a feature detector and a feature descriptor. The detec-
tor extracts a number of interested points from an image in
a way that is consistent with some variations of the illumi-
nation or viewpoint. The descriptor associates to the region
around each interest point a signature which identifies its
appearance compactly and robustly. For dense SIFT, it is
equivalent to performing SIFT descriptor on a dense grid of
locations on an image at a fixed scale and orientation. The
obtained feature vectors characterizing appearance informa-
tion are often used for categorization task.

2.1.3 Deep CNN Feature

Convolutional Neural Network (CNN) [19] is a type of
feed-forward artificial neural network which is inspired from
biology. The individual neurons are designed to simulate

cells within visual cortex, which are sensitive to small sub-
regions of input space, named receptive fields [15]. Thus the
connections among neurons are tied in such a way that each
output neuron only responds to a local region of input neu-
rons. This mechanism is better suited to exploit the strong
spatially local correlations presented in natural images. Cur-
rently, one of the most popular CNN architectures is the 9-
layers deep model [17] designed for ImageNet ILSVRC-2012.
There are four convolutional layers with their corresponding
pooling layers, and finally followed by an output layer which
is constructed according to category labels. As the exper-
iments in some latest works [18, 12, 31] have shown, this
architecture, even the pre-trained model via ImageNet da-
ta, can be well generalized to many other problems, without
any further specific design but maintaining impressive per-
formance.

2.2 Video (Image Set) Modeling
After extracting image features for each video frame, one

video clip can be regarded as a set of feature vectors F =
[f1, f2, ..., fn], where fi ∈ Rd denotes the i-th image with d-
dimensional feature description. Based on the feature vector
set, we exploit three types of image set models, linear sub-
space [13], covariance matrix [35], and Gaussian distribution
[28, 1], for their desirable capability of capturing data vari-
ations to model emotion video.

2.2.1 Linear Subspace

The feature set F = [f1, f2, ..., fn] can be represented by
a linear subspace P ∈ Rd×r via SVD as follows:

n∑
i=1

fif
T
i = PΛPT , (1)



where P = [p1, p2, ..., pr], pj is the j-th leading eigenvector,
r is the dimension of the subspace, and n is the number of
frames in the video clip. All of the video samples can be
modeled as a collection of linear subspaces [37, 13], which
are also the data points on Grassmann manifold Gr(r, d)
(Grassmann manifold is a special case of Riemannian man-
ifold [13]).

2.2.2 Covariance Matrix

We can also represent the image feature set with the d×d
sample covariance matrix:

C =
1

n− 1

n∑
i=1

(fi − f)(fi − f)T , (2)

where f is the mean vector of the image features. As the
raw second-order statistic of a set of samples, the covariance
matrix makes no assumption about the data distribution,
thus providing a natural representation by encoding the fea-
ture correlation information specific to each class [35]. It is
also well known that the d×d nonsingular covariance matri-
ces are Symmetric Positive Definite (SPD) matrices Sym+

d

lying on a Riemannian manifold.

2.2.3 Gaussian Distribution

Suppose the feature vectors f1, f2, ..., fn follow a k-dimensional
Gaussian distribution N (µ,Σ), where µ and Σ are the data
mean and covariance respectively:

µ = E(fi) =
1

n

n∑
i=1

fi, (3)

Σ = E[(fi−µ)(fi−µ)T ] =
1

n− 1

n∑
i=1

(fi−µ)(fi−µ)T . (4)

The Gaussian jointly considers the first-order statistic mean
and second-order statistic covariance in a single model. By
embedding the space of Gaussians into a Lie group or re-
garding it as a product of Lie groups, we can measure the
intrinsic distance between Gaussians on the underlying Rie-
mannian manifold [20].

2.3 Riemannian Kernels

2.3.1 Kernels for Linear Subspace

As presented in Section 2.2.1, the video samples are mod-
eled as a collection of linear subspaces which correspond to
points lying on Grassmann manifold M (also in Riemanni-
an space), denoted by P = {Pi}Ni=1, where N is the number
of video samples. The similarity between two data points
Pi and Pj can be measured via mapping the Grassmann
manifold to Euclidean space using Mercer kernels [13]. One
popularly used kernel [13, 14, 23] is the Projection kernel
originated from the principle angles between two subspaces
given by (see Figure 2):

KProj.−Poly.i,j = (γ · ||PTi Pj ||2F )α, (5)

where KProj.−Poly.i,j is an element in the kernel matrix. The

corresponding mapping is ΦProj. = PiP
T
i . Then a form of

θ
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Figure 2: An illustration of principal angles of linear
subspaces and their projection metric distances on
Grassmann manifold M .

RBF kernel [34] can be generated using ΦProj. by:

KProj.−RBFi,j = exp(−γ||ΦProj.(Pi)− ΦProj.(Pj)||2F ). (6)

2.3.2 Kernels for Covariance Matrix

The d×d SPD matrices, i.e. non-singlular covariance ma-
trices C = {Ci}Ni=1, can be formulated as data points on SPD
Riemannian manifold [26]. A commonly used distance met-
ric for SPD matrices is the Log-Euclidean Distance (LED)
[2]. Based on LED, [35] proposed a Riemannian kernel that
computes the inner-product in a vector space T obtained by
mapping data points from the SPD manifold to the tangent
space at the identity matrix I via ordinary matrix logarithm
operator (see Figure 3).

KLED−Poly.i,j = (γ · trace[log(Ci) · log(Cj)])
α. (7)

The mapping corresponding toKLED−Poly.i,j is given by ΦLED =
log(Ci). Similarly a form of RBF kernel [34] can be gener-
ated using ΦLED by:

KLED−RBFi,j = exp(−γ||ΦLED(Ci)− ΦLED(Cj)||2F ). (8)
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T
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Figure 3: An illustration of mapping covariance ma-
trices from the SPD Riemannian manifold M to the
tangent space T (which is a vector space) at the
point of identity matrix I on M .

2.3.3 Kernels for Gaussian Distribution

The space of d-dimensional multivariate Gaussians is a
Riemannian manifold and can be embeded into the space
of Symmetric Positive Definite (SPD) matrices [24], denot-
ed as Sym+

d+1. Thus A d-dimensional Gaussian N (µ,Σ) is
uniquely represented by a (d + 1) × (d + 1) SPD matrix G



as follows:

N (µ,Σ) ∼ G = |Σ|−
1

d+1

[
Σ + µµT µ
µT 1

]
(9)

When obtaining the SPD matrices G = {Gi}Ni=1, we can
calculate the corresponding Riemannian kernels similarly as
in Section 2.3.2:

KLED−Poly.i,j = (γ · trace[log(Gi) · log(Gj)])
α. (10)

KLED−RBFi,j = exp(−γ||ΦLED(Gi)− ΦLED(Gj)||2F ). (11)

2.4 Classifiers
Based on the above six Riemannian kernels, traditional

learning methods operating in vector space can be exploited
to classify data points (i.e. image set models) on the Rie-
mannian manifolds for emotion video recognition. In our
framework, three types of classifiers are investigated as de-
scribed below.

2.4.1 Kernel SVM

The Riemannian kernels enable the classifiers to operate
in an extrinsic feature space without computing the coor-
dinates of data in original space. An SVM classifier in the
kernel space is given by

f(x) = −→w ∗TΦ(x) + b∗, (12)

where Φ(x) is the mapping (e.g. ΦProj. and ΦIP ) which
generates the kernel function k(·, ·) by

Ki,j = k(xi, xj) = Φ(xi)
TΦ(xj). (13)

The weight vector −→w ∗ and bias b∗ are given by

−→w ∗, b∗ = argmin
−→w,b,η

1

2
||−→w ||22 + C

∑
i

ηi.

s.t. yi(
−→w TΦ(xi) + b) ≥ 1− ηi, ηi ≥ 0.

(14)

For this work, we employ the LibSVM [3] implementa-
tion on our pre-calculated Riemannian kernel matrices for
classification.

2.4.2 Logistic Regression

According to the Riemanian kernel matrices, the i-th row
contains similarities between the i-th video (image set) and
all videos in training set, which can be directly treated as a
feature vector of this sample. For each sample in the training
or test set, we calculate its similarities to all training samples
thus obtain the training kernel matrix and test kernel matrix
for feature representation. We employ an L2-regularized lo-
gistic regression on these features for classification by solving
the objective function:

min−→w
(C
∑
i

log(1 + exp(−yi −−→w Txi)) +
1

2
||−→w ||22). (15)

For this work, we employ the Liblinear [11] implementation
for optimization.

2.4.3 Partial Least Squares

Similar to Section 2.4.2, we also apply the partial least
square classifier [36] to the kernel matrices. We adapt it to
a one-vs-all manner to especially deal with the difficult and
confusion categories as in [23].

Suppose there are c categories of emotions, we design c
one-vs-all PLS to predict each class simultaneously. For a
single classifier, given feature variables X and 0-1 labels Y ,
the PLS decomposes them into

X = UxV
T
x + rx

Y = UyV
T
y + ry

(16)

where Ux and Uy contain the extracted latent vectors, Vx
and Vy represent the loadings, and rx and ry are residuals.
PLS is to find weight vectors wx and wy that

[cov(ux, uy)]2 = max
|w|=|v|=1

[cov(Xwx, Y wy)]2, (17)

where ux and uy are the column vectors of Ux and Uy re-
spectively. cov(ux, uy) is the covariance of samples. With
the obtained latent vectors, the regression coefficients from
X to Y are given by:

β = Wx(V Tx Wx)−1UxY

= XTUy(UTx XX
TUx)−1UTx Y,

(18)

thus we can predict Ŷ = Xβ [27]. Applying the c one-vs-all
PLS to each test sample, we can obtain c regression values
respectively. The category corresponding to the maximum
value is decided to be the recognition result.

2.4.4 Fusion Scheme

We learn each classifier on the six Riemannian kernels with
different image features respectively. An equal-weighted lin-
ear fusion is conducted among the prediction scores obtained
by the same type of classifiers. Besides the video modality,
we also obtain prediction scores on audio features (extracted
by OpenSMILE toolkit) [10]). A weighted term λ is intro-
duced at decision level for video-audio fusion:

Scorefusion = (1− λ)Scorevideo + λScoreaudio (19)

Similarly, The category corresponding to the maximum val-
ue of the score vector is decided to be the recognition result.

3. EXPERIMENTS

3.1 EmotiW 2014 Challenge
The Emotion Recognition in the Wild Challenge (EmotiW

2014) [7] consists of an audio-video based emotion classifi-
cation task which mimics real-world conditions. The goal of
this challenge is to extend and carry forward the new com-
mon platform for evaluation of emotion recognition methods
in the wild defined in EmotiW 2013 [8]. The database in
the 2014 challenge is the Acted Faical Expression in Wild
(AFEW) [9] 4.0, which has been collected from movies show-
ing close-to-real-world conditions. Three sets for training,
validation, and testing are available for participants (The
numbers of samples for each emotion category in the three
sets are illustrated in Table 1). The task is to classify an
audio-video clip into one of the seven emotion categories



Table 1: The numbers of samples for each emotion
category in the training, validation and testing sets.

An Di Fe Ha Ne Sa Su

Train 92 66 66 105 102 82 54

Val 59 39 44 63 61 59 46

Test 58 26 46 81 117 53 26

(i.e. angry, disgust, fear, happy, neutral, sad, and surprise).
The labels of the testing set are unknown. Participants can
learn their models on training set and optimize the parame-
ters on validation set, then report the prediction results on
testing set for evaluation.

3.2 Parameter Setting
We simply use the aligned face images provided by Emoti-

W 2014 organizers. All images are resized to 64× 64 pixels.
Three kinds of image features are employed on the aligned
faces: HOG, Dense SIFT, and DCNN.

For HOG, we divide each image into 7×7 = 49 overlapping
blocks with the size of 16 × 16 pixels (i.e. the strides are
8 pixels in both horizontal and vertical directions). The
descriptor is applied by computing histograms of oriented
gradient on 2 × 2 cells in each block, and the orientations
are quantized into 9 bins, which results in 2 × 2 × 9 = 36
dimensions for each block and 36 × 49 = 1764 dimensions
for the whole image.

For Dense SIFT, we divide each image into 49 overlapping
local regions as done for HOG. In each 16× 16 pixels block,
we apply the SIFT descriptor to the center point, and obtain
a typical 4× 4× 8 = 128 dimensions feature vector. For the
whole image, we have 128× 49 = 6272 dimensions feature.

For DCNN, we employ the Caffe [16] implementation,
which is commonly used in several latest works [12, 31].
Two types of DCNN models are trained by feeding differen-
t training data: ImageNet ILSVRC-2012 [5] and Celebrity
Faces in the Wild (CFW) [40]. The first one is for evaluating
the generalization ability of the deep model and natural im-
age data, so we exactly take use of the same parameters as
that in [17], the 9216 nodes’ values of the last convolutional
layer are used for final image features. The second one is
to explore the shared feature representations for both face
identities and expressions. Over 150,000 face images from
1,520 people are used for training and the labels are their
identities. The architecture is 3@237×237→ 96@57×57→
96@28×28→ 256@28×28→ 384@14×14→ 256@14×14→
256@7 × 7 → 4096 → 1520. Similar to the first model, the
256 × 7 × 7 = 12544 nodes’ values of the last convolutional
layer are used for final image features.

3.3 Results Comparisons
The emotion recognition results on validation set based

on different classifiers are illustrated in Figure 4. For each
single classifier, the DCNN features have shown promising
performance on the task, especially the features extracted
by Caffe trained on CFW have achieved better results than
the specific hand-crafted features.

We also demonstrate the results on validation set based
on different features in Table 2. For each single feature, the

results based on six Riemannian kernels and three classifiers
are all listed respectively. As shown, PLS achieves the best
performance for its one-vs-all manner which can especially
deal with the difficult and confusion categories.

Sub(Poly) Sub(RBF) Cov(Poly) Cov(RBF) Gau(Poly) Gau(RBF)
0.1

0.2

0.3

0.4

0.5

Video (image set) models and Riemannian kernels

R
ec

og
ni

ti
on

 A
cc

ur
ac

y

 

 
HOG
Dense SIFT
DCNN (Caffe-ImageNet)
DCNN (Caffe-CFW)

(a) Kernel SVM.
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(b) Logistic Regression.
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(c) Partial Least Squares.

Figure 4: Emotion recognition accuracy on valida-
tion set based on different classifiers.

The overall recognition results are obtained by one-vs-
all PLS classifier using decision-level fusion over different
kernels. As presented in Section 2.4.4, an equal-weighted
linear fusion is conducted among the prediction scores based
on the six Riemannian kernels with different features, and
the weighted term for video-audio fusion is set as λ = 0.3
in the final submission. Different strategies of fusion and
their corresponding results on validation and test sets are
all listed in Table 3.



Table 2: Emotion recognition accuracy on validation set based on different image features.

(a) HOG

Linear Subspace Covariance Matrix Gaussian Distribution

Proj.-Poly. 

Kernel

Proj.-RBF 

Kernel

LED-Poly.

Kenrel

LED-RBF 

Kernel

LED-Poly.

Kenrel

LED-RBF 

Kernel

Kernel SVM 38.27% 37.47% 38.01% 26.15% 35.85% 31.27%

Logistic Regression 40.16% 35.04% 16.44% 36.39% 16.98% 33.69%

Partial Least Squares 38.01% 38.01% 38.01% 38.27% 35.85% 37.47%

(b) Dense SIFT

Linear Subspace Covariance Matrix Gaussian Distribution

Proj.-Poly. 

Kernel

Proj.-RBF 

Kernel

LED-Poly.

Kenrel

LED-RBF 

Kernel

LED-Poly.

Kenrel

LED-RBF 

Kernel

Kernel SVM 39.08% 36.39% 40.70% 25.88% 39.89% 36.39%

Logistic Regression 39.08% 38.54% 16.44% 30.46% 16.98% 38.27%

Partial Least Squares 42.05% 42.05% 40.97% 40.70% 39.62% 40.70%

(c) DCNN (Caffe-ImageNet)

Linear Subspace Covariance Matrix Gaussian Distribution

Proj.-Poly. 

Kernel

Proj.-RBF 

Kernel

LED-Poly.

Kenrel

LED-RBF 

Kernel

LED-Poly.

Kenrel

LED-RBF 

Kernel

Kernel SVM 37.74% 36.39% 36.93% 31.00% 39.08% 33.42%

Logistic Regression 37.47% 37.20% 17.25% 37.47% 33.69% 36.66%

Partial Least Squares 37.47% 37.47% 37.74% 37.20% 38.81% 36.12%

(d) DCNN (Caffe-CFW)

Linear Subspace Covariance Matrix Gaussian Distribution

Proj.-Poly. 

Kernel

Proj.-RBF 

Kernel

LED-Poly.

Kenrel

LED-RBF 

Kernel

LED-Poly.

Kenrel

LED-RBF 

Kernel

Kernel SVM 40.70% 38.54% 40.43% 30.46% 38.01% 36.12%

Logistic Regression 40.97% 38.27% 16.98% 40.97% 16.98% 38.27%

Partial Least Squares 42.86% 42.86% 40.70% 42.32% 40.70% 42.05%

The confusion matrix of the final submission method are
shown in Figure 5. We can see that “angry”, “happy” and
“neutral” are much easier to be distinguished from other
emotions, but it is still hard to do well on some difficult
and confusion emotion categories such as “disgust”, “fear”,
and “sad”. Moreover, in contrast to the experience in emo-
tion classification on lab-controlled data, in our experiments,
“surprise” is hard to be recognized and easy to be confused
with some other categories like “neutral” and “fear”. The
reason may lie in the following two aspects: first, few “sur-
prise” data are provided for learning and testing compared
to other categories (as shown in Table 1); second, the “sur-
prise” emotion may not be acted exaggeratedly sometimes
in the real-world condition, thus no typical appearance vari-
ations (e.g. mouth stretching, upper lip raising) are shown
as that in lab-controlled data.

4. CONCLUSIONS
In this paper, we propose a method for video-based emo-

tion recognition in real-world condition. Each emotion video
clips is simply regarded as an image set and different kinds
of image set models are used to represent the video clips as
a collection of data points on Riemannian manifold. Then
multiple Riemanian kernels are employed on these set model-
s correspondingly for distance metrics. At last, a score-level
fusion of classifiers learned based on different kernel method-
s and different modalities is conducted for final recognition
results. The method is evaluated on EmotiW 2014 data and
achieves promising results on both validation and unseen
test data. In the future, we will try to deal with the few d-
ifficult categories and explore more effective fusion strategy
to further improve the performance.



Table 3: Performance comparisons of different strategies on both validation and test set based on PLS.

Methods
Accuracy

Val Test

Baseline (provided by EmotiW organizers) 34.4% 33.7%

Audio (OpenSMILE Toolkit) 30.73% --

Video

HOG 38.01% --

Dense SIFT 43.94% --

DCNN (Caffe-ImageNet) 39.35% --

DCNN (Caffe-CFW) 43.40% --

HOG + Dense SIFT 44.47% --

HOG + Dense SIFT + DCNN (Caffe-ImageNet) 44.74% --

HOG + Dense SIFT + DCNN (Caffe-CFW) 45.28% --

Audio + Video ( HOG+Dense SIFT ) 46.36% 46.68%

Audio+Video ( HOG + Dense SIFT + DCNN (Caffe-ImageNet) ) 46.90% 47.91%

Audio+Video ( HOG + Dense SIFT + DCNN (Caffe-CFW) ) 48.52% 50.37%

Angry Disgust Fear Happy Neutral Sad Surprise

Angry 84.75% 3.39% 0.00% 1.69% 5.08% 5.08% 0.00%

Disgust 10.26% 17.95% 2.56% 28.21% 33.33% 5.13% 2.56%

Fear 27.27% 6.82% 27.27% 13.64% 11.36% 9.09% 4.55%

Happy 4.76% 0.00% 0.00% 82.54% 9.52% 3.17% 0.00%

Neutral 13.11% 0.00% 1.64% 8.20% 70.49% 6.56% 0.00%

Sad 13.56% 3.39% 6.78% 23.73% 28.81% 22.03% 1.69%

Surprise 17.39% 4.35% 28.26% 8.70% 32.61% 2.17% 6.52%

(a) Validation set

Angry Disgust Fear Happy Neutral Sad Surprise

Angry 81.03% 3.45% 0.00% 5.17% 10.34% 0.00% 0.00%

Disgust 11.54% 3.85% 3.85% 34.62% 23.08% 15.38% 7.69%

Fear 26.09% 0.00% 23.91% 10.87% 19.57% 15.22% 4.35%

Happy 8.64% 0.00% 1.23% 64.20% 11.11% 14.81% 0.00%

Neutral 7.69% 1.71% 5.13% 9.40% 63.25% 11.97% 0.85%

Sad 11.32% 0.00% 3.77% 24.53% 24.53% 33.96% 1.89%

Surprise 11.54% 0.00% 19.23% 7.69% 34.62% 19.23% 7.69%

(b) Test set

Figure 5: Confusion matrix of the final submission method.
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[27] R. Rosipal and N. Krämer. Overview and recent
advances in partial least squares. In Subspace, Latent
Structure and Feature Selection, pages 34–51.
Springer, 2006.

[28] G. Shakhnarovich, J. W. Fisher, and T. Darrell. Face
recognition from long-term observations. In ECCV.
Springer, 2002.

[29] C. Shan, S. Gong, and P. W. McOwan. Facial
expression recognition based on local binary patterns:
A comprehensive study. Image and Vision Computing,
27(6):803–816, 2009.

[30] K. Sikka, K. Dykstra, S. Sathyanarayana,
G. Littlewort, and M. Bartlett. Multiple kernel
learning for emotion recognition in the wild. In ACM
ICMI. ACM, 2013.

[31] K. Simonyan and A. Zisserman. Two-stream
convolutional networks for action recognition in
videos. arXiv preprint arXiv:1406.2199, 2014.

[32] M. Valstar, B. Schuller, K. Smith, F. Eyben, B. Jiang,
S. Bilakhia, S. Schnieder, R. Cowie, and M. Pantic.
Avec 2013: the continuous audio/visual emotion and
depression recognition challenge. In ACM Workshop
on AVEC. ACM, 2013.

[33] M. F. Valstar, B. Jiang, M. Mehu, M. Pantic, and
K. Scherer. The first facial expression recognition and
analysis challenge. In FG. IEEE, 2011.

[34] R. Vemulapalli, J. K. Pillai, and R. Chellappa. Kernel
learning for extrinsic classification of manifold
features. In CVPR. IEEE, 2013.

[35] R. Wang, H. Guo, L. S. Davis, and Q. Dai. Covariance
discriminative learning: A natural and efficient
approach to image set classification. In CVPR. IEEE,
2012.

[36] H. Wold. Partial least squares. Encyclopedia of
statistical sciences, 1985.

[37] O. Yamaguchi, K. Fukui, and K.-i. Maeda. Face
recognition using temporal image sequence. In FG.
IEEE, 1998.

[38] P. Yang, Q. Liu, and D. N. Metaxas. Boosting coded
dynamic features for facial action units and facial
expression recognition. In CVPR. IEEE, 2007.

[39] Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang.
A survey of affect recognition methods: Audio, visual,
and spontaneous expressions. Pattern Analysis and
Machine Intelligence, IEEE Transactions on,
31(1):39–58, 2009.

[40] X. Zhang, L. Zhang, X.-J. Wang, and H.-Y. Shum.
Finding celebrities in billions of web images.
Multimedia, IEEE Transactions on, 14(4):995–1007,
2012.

[41] G. Zhao and M. Pietikainen. Dynamic texture
recognition using local binary patterns with an
application to facial expressions. Pattern Analysis and
Machine Intelligence, IEEE Transactions on,
29(6):915–928, 2007.

[42] L. Zhong, Q. Liu, P. Yang, B. Liu, J. Huang, and
D. N. Metaxas. Learning active facial patches for
expression analysis. In CVPR. IEEE, 2012.


